Dissertation Defense: Stephen DeVito

Candidate Name: Stephen DeVito

Major: Tumor Biology

Advisor: Rabindra Roy, Ph.D.

Title: Novel Base Excision Repair And Hypoxanthine In Live Human Cells

Elucidating the mechanism of DNA damage and mutation is key to understating cancer genesis. In the first section of this manuscript we examined base excision repair enzymes (BER) responsible for mitigating damage to DNA. BER DNA glycosylase activity was characterized both in silico, and in vitro. N-methylpurine DNA glycosylase (MPG) and 8-oxoguanine DNA glycosylase (OGG1) were shown to have activity on novel substrates 7,8-dihydro-8-oxoguanine (8-oxo-G) and hypoxanthine (Hx) respectively. We utilized surface plasmon resonance (SPR) and DNA glycosylase activity assays to characterize binding affinity and enzymatic activity. We found the OGG1 bound to Hx with similar affinity as Hx’s canonical DNA repair enzyme MPG, yet produced little to no product. This led us to the hypothesis that Hx may have more than one DNA repair enzyme, and may also act as a potential replication blocker by binding to non-catalytic repair proteins and not releasing from DNA. To understand Hx’s effect on genomic biology we examined Hx repair in human colon cancer cell line HCT116 and normal human kidney fibroblast line HEK293. Here we found that Hx causes mutation in both leading and lagging strands of DNA, with an increase in mutation frequency found in the lagging strand. Further, Hx causes AG transition mutations, insertions, and deletions in both normal HEK293 and cancer HCT116 cells lines.

Wednesday, August 29, 2018 at 2:00pm to 4:00pm

Building D, Warwick Evans Conference Room
4000 Reservoir Road, N.W., Washington

Event Type

Academic Events, Dissertation Defense


Biomedical Graduate Education, Tumor Biology Training Program, Graduate School of Arts and Sciences



Open to the public and the press?


Event Contact Name

Jadyn Stewart

Google Calendar iCal Outlook

Recent Activity