Dissertation Defense: Johnson Truong

Candidate Name: Johnson Truong

Major: Chemistry

Thesis Advisor: Jong-in Hahm, Ph.D.

Title: Investigating the Fundamental Optical Properties of Single Zinc Oxide Nanorods as an Optical Waveguide for Biomedical Applications

The superior optical properties of zinc oxide nanorods (ZnO NRs) have continued to promote their broad use in photonics, light detecting, and biosensing applications due to their waveguiding properties. One particularly important property pertinent to biodetection is fluorescence intensification on nanorod ends (FINE), a phenomenon in which a spatially localized and intensified fluorescence signal with extended photostability at the NR ends is present in the emission profiles of fluorophore-coupled biomolecules on ZnO NRs. Understanding the key parameters affecting the FINE and the degree of FINE (DoF) is critical for further development of ZnO NRs in biosensor applications.

First, I present the outcomes of polarization-resolved measurements and effects of polarization on FINE and DoF. More specifically, I examined the light-matter interaction geometry of the ZnO NR main axis in respect to the polarization of incident excitation by controlling the polarization of the collected emission. The results show that the FINE phenomenon is greatly affected by the polarization state of the excitation source and the highest DoF can be achieved when both the excitation source and collected emission polarization states are perpendicular to the NR main axis. Secondly, I present results of multiphoton-produced optical signals waveguided through a single ZnO NR using scanning offset-emission hyperspectral microscopy that show the waveguiding capabilities of sum-frequency generation, deep-trap emissions, and coherent anti-Stokes Raman scattering signals of ZnO NRs as a function of measurement position, light-matter interaction geometry, and the optical origin of the guided signal. Thirdly, I introduce results of the emission intensity of rhodamine 6G (R6G) coupled to ZnO NRs under various levels of uniaxial compressive and tensile stress. Lastly, I demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO NRs using a novel multipurpose platform of copper silicide nanoblocks that preform laterally in well-defined directions on Si.

Tuesday, May 26 at 11:00am to 1:00pm

Zoom Meeting link available, write the Event Contact below

Event Type

Academic Events, Dissertation Defense

Departments

Georgetown College, Chemistry, Graduate School of Arts & Sciences, Graduate Thesis and Dissertation Defense

Cost

Free

Open to the public and the press?

Yes

Event Contact Name

Valencia Boyd

Event Contact Email

vb392@georgetown.eduvb

Subscribe
Google Calendar iCal Outlook

Recent Activity